Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C-->T, is present at an unexpectedly high frequency in the general population, as was the case for 625G-->A, together conferring susceptibility to ethylmalonic aciduria.

نویسندگان

  • N Gregersen
  • V S Winter
  • M J Corydon
  • T J Corydon
  • P Rinaldo
  • A Ribes
  • G Martinez
  • M J Bennett
  • C Vianey-Saban
  • A Bhala
  • D E Hale
  • W Lehnert
  • S Kmoch
  • M Roig
  • E Riudor
  • H Eiberg
  • B S Andresen
  • P Bross
  • L A Bolund
  • S Kølvraa
چکیده

We have shown previously that a variant allele of the short-chain acyl-CoA dehydrogenase ( SCAD ) gene, 625G-->A, is present in homozygous form in 7% of control individuals and in 60% of 135 patients with elevated urinary excretion of ethylmalonic acid (EMA). We have now characterized three disease-causing mutations (confirmed by lack of enzyme activity after expression in COS-7 cells) and a new susceptibility variant in the SCAD gene of two patients with SCAD deficiency, and investigated their frequency in patients with elevated EMA excretion. The first SCAD-deficient patient was a compound heterozygote for two mutations, 274G-->T and 529T-->C. These mutations were not present in 98 normal control alleles, but the 529T-->C mutation was found in one allele among 133 patients with elevated EMA excretion. The second patient carried a 1147C-->T mutation and the 625G-->A polymorphism in one allele, and a single point mutation, 511C-->T, in the other. The 1147C-->T mutation was not present in 98 normal alleles, but was detected in three alleles of 133 patients with elevated EMA excretion, consistently as a 625A-1147T allele. On the other hand, the 511C-->T mutation was present in 13 of 130 and 15 of 67 625G alleles, respectively, of normal controls and patients with elevated EMA excretion, and was never associated with the 625A variant allele. This over-representation of the haplotype 511T-625G among the common 625G alleles in patients compared with controls was significant ( P < 0.02), suggesting that the allele 511T-625G-like 511C-625A-confers susceptibility to ethylmalonic aciduria. Expression of the variant R147W SCAD protein, encoded by the 511T-625G allele, in COS-7 cells showed 45% activity at 37 degrees C in comparison with the wild-type protein, comparable levels of activity at 26 degrees C, and 13% activity when incubated at 41 degrees C. This temperature profile is different from that observed for the variant G185S SCAD protein, encoded by the 511C-625A allele, where higher than normal activity was found at 26 and 37 degrees C, and 58% activity was present at 41 degrees C. These results corroborate the notion that the 511C-625A variant allele is one of the possible underlying causes of ethylmalonic aciduria, and suggest that the 511C-->T mutation represents a second susceptibility variation in the SCAD gene. We conclude that ethylmalonic aciduria, a commonly detected biochemical phenotype, is a complex multifactorial/polygenic condition where, in addition to the emerging role of SCAD susceptibility alleles, other genetic and environmental factors are involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency.

CONTEXT Short-chain acyl-coenzyme A (CoA) dehydrogenase (SCAD) deficiency (SCADD) is an autosomal recessive, clinically heterogeneous disorder with only 22 case reports published so far. Screening for SCADD is included in expanded newborn screening programs in most US and Australian states. OBJECTIVES To describe the genetic, biochemical, and clinical characteristics of SCADD patients in the ...

متن کامل

Short-chain acyl-CoA dehydrogenase deficiency.

The c.625G>A variant of the short-chain acyl-CoA dehydrogenase (SCAD) gene is considered to confer susceptibility for developing “clinical SCAD deficiency (SCADD)” and appears to be common in the general population. To determine the frequency of the c.625G>A variant in the Netherlands, we analyzed 1036 screening cards of 5to 8-dayold newborns and found 5.5% homozygous and 31.3% heterozygous for...

متن کامل

First case report of short-chain acyl-CoA dehydrogenase deficiency in China

Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive inborn error of mitochondrial fatty acid oxidation. It is caused by rare mutations as well as polymorphic susceptibility variants. We describe here the case of a 1-year-old male patient who had growth and mental retardation, seizures, and recurring fever since infancy. Urinary gas chromatography/mass spectrometr...

متن کامل

Identification of two variant short chain acyl-coenzyme A dehydrogenase alleles, each containing a different point mutation in a patient with short chain acyl-coenzyme A dehydrogenase deficiency.

Two distinct mutant alleles of the precursor (p) short chain acyl-CoA dehydrogenase (SCAD) gene were identified in a SCAD-deficient patient (YH2065) using the polymerase chain reaction to amplify cDNA synthesized from total RNA from her fibroblasts. Cells from this patient had previously been shown to synthesize a labile variant SCAD in contrast to the normal stability of variant SCADs in two o...

متن کامل

Mutation Analysis of Connexin 26 Gene and Del (GJB6-D13S1830) in Patients with Hereditary Deafness from Two Provinces in Iran

Mutations in the connexin 26 (Cx26) gene at the DFNB1 locus on chromosome 13q12 are associated with autosomal recessive non-syndromic hearing loss (ARNSHL). There are many known mutations in this gene that cause hearing loss. A single frameshift, at position 35 (35delG) accounts for 50% of mutations in the Caucasian population with carrier frequencies of 1.5-2.5%. In this study we investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 1998